The NIST Workshop on Reliability Issues in Nanomaterials: August 17-19, 2004

R. R. Keller and D. T. Read, NIST Materials Reliability Division, 325 Broadway, Boulder, CO 80305

Goals:

- (a) identification of specific measurement-related barriers to successful incorporation of reliable nanomaterials into widespread engineering practice in the next 5 to 10 years:
- (b) identification of measurement methodologies. standards, data, and models that might be appropriate for overcoming these barriers.

Reliability of Nanomaterials:

- (i) the extent to which nanomaterials exhibit consistent mechanical behavior and associated properties over a long period of time, such as during a device lifetime;
- (ii) the extent to which nanomaterial behavior and properties can be predicted over a given period.

Participation:

34 participants representing cutting-edge nanomechanics research in industry, academia, non-NIST national laboratories.

Appearance of commercial product names or companies is intended to represent actual discussion during the workshop and does not imply endorsement by NIST.

Acknowledgements:

NSF Mechanics and Structure of Materials Program, NIST Office of Microelectronics Programs, University of Colorado Department of Mechanical Engineering, all Workshop participants.

Presented at: Government Microcircuit Applications & Critical Technology Conference, 2005, Las Vegas, NV.

Example Issues Affecting Reliability of Nanomaterials:

Unusual structures/behaviors/properties

Thin film de-adhesion under high stress

Operation under extreme conditions

Cu interconnects: high current, temperature

Image courtesy of IBM Corporation

Size/shape/distribution control

InAs quantum dots

NEMS/MEMS: biological environments

Figure courtesy of University of Colorado

Carbon nanotubes

Figure courtesy of Zyvex Corporation

Measurement Needs:

- · AFM, STM, nanoindentation:
 - Improved force, displacement measurement, position control, and general instrument consistency;
- Direct imaging of contact areas, deconvolution of sample/probe interactions;
- · Standards:
 - Reflectivity, film thickness, texture, axial/lateral microforce, AFM spring constant, AFM tip-sample contact area. calibration specimens for AFM and nanoindentation, film strength and toughness;
- · Scaling of mechanical test methods and specimens (uniaxial, multiaxial, torsional stressing, deformation mapping, gripping and manipulation);
- Tools capable of multiple, coupled measurements of properties and behaviors:
- High resolution (space, energy), fast methods for imaging, morphology, chemistry, down to the single atom level;
- · Methods for local measurement of: strain, electrical properties, structure size/shape, spatially-resolved temperature, stress gradients.

Novel test specimens: Images courtesy of Sandia National Laboratories

Mechanical properties by means of nanoprobes;

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce